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Abstract-Applied tractions acting on the surface of a cylindrical bore in an infinite elastic medium are
considered, The statically applied tractions are of the form of radial pressure and torsional circular line loads.
Integral representations of the displacement and streSS fields are derived and numerical results are presented
showing the decay of the response with the distance from the point of load application. The results obtained
represent long-time solutions for the corresponding dynamic problem as weD as the limiting case of applied
time-harmonic loadings as the frequency goes to zero,

1. INTRODUCTION

The problem of applied tractions acting on the surface of a bore in an elastic medium was
considered many years ago. Among the first investigations were those of Westergaard [I] who
studied the static response of an elastic medium to applied radial pressures acting over a finite
length of the bore. However few numerical results, confined only to the bore surface, were
presented, undoubtedly due to the lack of modern computing facilities existing at the time.
Jordan [2] later treated the corresponding dynamic problem of a sudden application of pressure
over a finite interval of the bore, but in view of the complexities encountered in this more
difficult problem, presented numerical results only at large distances (i.e. 20 radii or more) away
from the nearest point of load application.

In the present problem, the application of a traction acting statically on a circle of the
cylindrical bore is considered. The application of circular line loads of this nature, expressed as
Dirac-delta functions in the axial coordinate, has been used previously by the author in the
investigation of the effect of moving loads [3,4].

The line loads considered here are of two types: a statically applied radial pressure load and
a torsional line load. Integral representations for the displacement and stress fields are obtained
and numerical results are given for the displacement and stress components both along a radial
line emanating from the load and along the bore surface. Curves showing the decay of these
quantities with the distance from the point of load application indicate the degree of significant
penetration into the medium which can be expected. Thus the static response, which has been
largely neglected, is of interest (e.g. in the field of hydraulic fracture) since it reveals to some
extent as a first approximation, the area of damage which may be encountered due to applied
loads acting on the walls of existing bore holes. The static response is also of interest since it
represents the long-time solution to problems of sudden load application and also the limiting
case of time-harmonic prescribed loads as the frequency approaches zero. In addition, the
solutions to the present problem of applied line loads can be considered as the Green's
functions to evaluate the response due to applied loads having arbitrary axi-symmetric space
variations along the bore surface.

2. GENERAL FORMULATION AND SOLUTION

Consider a cylindrical bore of radius r =a in a linear isotropic elastic medium with shear
modulus ,." and Poisson ratio II. The medium is referred to a non-dimensional cylindrical
coordinate system (p =ria, 9, e=zla) whose origin lies at the center of the bore (Fig. 1).
Axisymmetric line loads of intensity P, either radial pressure or torsional, act on the bore
surface along a circle at e=o.

tThis investigation was performed while the author was on leaveduring 1980-1981 from Dept. of Solid Mechanics, Materials
and Structures, School of Engineering. Tel·Aviv University, Ramat-Aviv. 69978 Tel·Aviv, Israel,
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Fig. I. Geometry of problem.

The boundary conditions are then either

p
CT" = - -5(~),

a
or

p
CT,o =-oW,

a

where oW is the Dirac-delta function.
The displacements

CT,z = CT,o = 0,

CTrr = CTrz == 0,

p == 1 (a)

p = 1 (b)

(1)

u(p,~) = wk, + vko+ ukz

must satisfy the equilibrium equations

where

a- la- a-
r; = apk, +p aa ko + al"~

(2)

(3)

(4)

Since the method of solution for the radial and torsional loads differ, each will be treated
separately.

(a) Axi-symmetric radial solution
For this case the circumferential displacement v = 0. The behavior of the medium can then

be readily formulated in terms of a Love strain function cf>(p,~) [5]. Expressing the non­
vanishing radial and axial displacements for this axi-symmetric case by

(Sa)
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U =-b[I- PV2q, - 1-~]
a p. 2p. a~

respectively, the equation of equilibrium, eqn (3), is satisfied if

Appropriate solutions of the bi-harmonic equation which decay as p -+ 00 are [6]

where

f(p) = A(a)Ko(ap) +B(a)pK,(ap).
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(5b)

(6)

(7a)

(7b)

In the above, Kn(ap) are the modified Bessel functions of order n, and A(a) and B(a) are
undetermined constants.

The stress components expressed in terms of the potential function q,(p,~) are: [5]

(8)

(Fre = (Fez =O.

The boundary conditions for the axial radial case, eqn (la), then become

(9)

where the Dirac-delta function has been replaced by the integral representation [7]

11'"8(~) = - cos a~ d a.
7T 0

(l0)

It is noted that the last of the boundary conditions of eqn (la) is satisfied identically.
Substituting q,(p,~) given by eqns (7a, b) in eqns (9), using the standard relations for the

derivatives of the K n functions [8], and equating term by term, results, after some manipulation,
in the following equations for A and B:

[
aKo+K, (2p-l)Ko+aK, ]{A} =I:~

-aK, -aKo+2(l- p)K, B 0 (ll)t

tFor simplification, the following notation is used here and below: K... K.(a).
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Solving the above system, the constants are determined:

Pa 2

A(a) = --n-2
D

[2(1- v)K 1 - aKol
11" a

(12)

where
(13)

The displacement and stress components in the medium are then immediately obtained from
eqns (5) and (8) in a non-dimensional form:

(14a)

(14b)

The solution for the axi-symmetric radial case is formally complete. Evaluation of the above
integrals and numerical results are given in the next section.

(b) Axi-symmetric torsional solution
For this case, the equation of equilibrium must be satisfied together with the boundary

conditions, eqns (lb). Appropriate solutions satisfying eqn (3) are Ii = vk8 with u = w =O. The
equation of equilibrium then reduces to the scalar equation

(I5)

The stresses, obtained from the stress-strain relations

(16)

become

(I =1!:(av -~) (a)
r8 a ap p

(b)
(17)

(ITT = (I88 = (Ir, = (Izz =O. (c)
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The last two boundary conditions of eqn (1b) are identically satisfied while, using eqn (17a),
the remaining boundary condition is expressed as

ov vI P i'"--- ==- cosaeda.
op P p=l !L7T 0

(18)

Again, the integral representation for the Dirac-delta function, eqn (10), has been used in
eqn (18).

Appropriate solutions to eqn (15) which decay as p -+ 00 are given by

v(p,~) == L'" C(a)K\(ap) cos a~ da.

Substituting in eqn (18), as before, and equating term by term, we obtain:

P 1
C(a) == - !L7T • aKz(a)

and hence the displacement becomes

- P i'" Kt(ap)v(p, ~) - - - K ( ) cos ae da.
7TJ,L 0 a z a

(19)

(20)

(21a)

Substitution in eqns (17a, b) yields the following expressions for the non-vanishing stress
components

(21b)

(2Ic)

It is of interest to note that the above solution represents the degenerate case of a moving
load system given by eqns (64) of [4]t (when q appearing in those equations is set to unity).

3. NUMERICAL SOLUTION AND RESULTS

The response to the axi-symmetric radial and torsional loadings are expressed by the
integral representations of eqns (14) and (21) respectively. Due to the nature of the integrands,
the integrals are integrated numerically. (Any attempt to integrate in the complex plane would
eventually lead, in any case, to a numerical integration of the resulting branch integrals which
arise due to the multivalued character of the modified Bessel functions.)

In general, the integrals are well-behaved and tend to zero as a -+00. (Noting that K 1> Ko, it
follows that D appearing in the integrands of eqn (14) is always positive; consequently no
singularities exist in 0 < a < 00.) Moreover, all apparent singularities existing at a == 0 are
removable. We denote the integrands of the various quantities of eqns (14) by Q(). Upon
representing the K n functions by their power series [8], the following limits are obtained as
a -+0:

Qw == l/2p, ~"== =l/PZ~ Q8/J == l/PZ)

Qu - Qz: - Qrz - o.
(22)

It is of interest to note that these values, as they necessarily must, correspond to the
response to a constant traction 0'" == -1 applied uniformly along the bore surface, p == 1, i.e. the
classical Lame problem [9].

tit is noted that a misprint appears in eqn (64a) 0([4]; III should appear in the denominator of the integrand.
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Fig. 2. Radial displacement along line g=0 due to radial pressure load.
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Fig. 3. Stress components along line g=0 due to radial pressure load.
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Fig. 4. Displacement components at bore surface due to radial pressure load.

Similarly the limiting values as a -l>O of tl}e integrands of eqns (21) for the torsional loading
case are found to be:

Q• ." -1/2p, Qre'" I/p2, Qze = O. (23)

These values, which correspond to the response of a constant traction (1re'" 1 applied
uniformly along the surface p'" 1, are given in [4].

Convergence of tbe integrals as a -l> 00 and the method of integration are discussed in the
Appendix.

(a) Results: axi-symmetric radial loading
Numerical results for this case are shown in Figs. 2-5. The curves presented were calculated

using a value of ao'" 60 and increments, .t1a =0.025. A verification of the method was
established by using various values of similar order for Qo and .t1a. In all cases, for values of
p> 1.1, the same results were obtained to three sipificant figures. In the curves presented,
results are given for two values of v: v =0 and 0.25.

In Fig. 2, the radial displacement w along the radial line E=0 is presented as a function of p.
It is seen that the displacement decays rapidly as p increases and, moreover, is not very
sensitive to P. Values are sbown for p > 1.1 and suggested curves in the vicinity of the applied load



172 R. PARNES

10

0,75

y=O.2S

(a)

$1:::1

IOU

P

(b)

Fig. 5. Stress components at bore surface due to radial pressure load.

are indicated by broken Iines.t It is clear that due to the nature of the Dirac-delta loading, the
displacement near the point of load application becomes singular.

The variations of stress components U rr and uu along the radial line ~ =0 are shown in Fig.
3(a). Again, it is seen that the effect of Poisson's ratio on these stress components is quite small.
However, from Fig. 3(b) we observe that as p approaches unity the stress component US6 is
particularly sensitive to II. For II =0, UeI! is seen to approach 00 as p -l> 1 while for II =0.25 the
limiting value becomes negative (and at a faster rate) as p -l> 1. This result was found to be true
for all values II> O.

The response along the bore surface is shown in Figs. 4 and 5 as a function of ~. We note,
from Fig. 4(a), that the radial displacement w is very large near the point of load application,
reflecting a silllQlarity, and decays rapidly as ~ becomes large. Near the point of loading the
displacement is greater for II =0 than for II =0.25 while the opposite is true for larger f

tNear the point of Ioadm" p.i;; I.l and ~.i;; 0.\, the integration scheme described in the AppeDdix docs not yield the
desired accuracy (when using reasonable values of ao and Act) due to the existence of sinau\arities in this region. (This is
reflected by the slow decay of the intearaJs appearina in eqn (Am.) Consequently, the response in this region is shown in
all fi.gures by means of broken lines.
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The longitudinal displacement u of the bore surface is presented in Fig. 4(b). Here we
observe that, while decaying with increasing values of g, u does not become singular as g-+ 0
but instead approaches a finite value dependent on v. This would appear to represent a
contradiction with the fact that u(g =0) =0, as seen in eqn (l4b) and as must be true using
conventional arguments of symmetry. However, this contradiction disappears if u is dis­
continuous at g= 0, namely if lim u(g)"# u(O). We therefore conclude that a jump [u] occurs at

E->O
g=O.t

In Figs. 5, the variations of the non-vanishing stress components O'IHJ and O'zz acting at the
bore surface are surface are shown. In both cases, the stresses are seen to be singular as ~ -+ 0
and decay rapidly with increasing g.
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Fig. 6. Displacement and stress components along line e= 0 due to torsional load.

tA jump discontinuity in the displacement perpendicular to the applied load is known to occur when a concentrated
lo~ is applied and, in~, when a co~trated line load, as in .the p~esent case, acts; for example, a half-space
subJected to a normal cU'cuiar lme-load (lO). This phenomenon repeats Itself In the corresponding dynamic problem [11].

55 Yol. 19. No. 2-F
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Fig. 7. Displacement and stress components at bore surface due to torsional load.

(b) Results: torsional loading
Results for the case of torsional loading are presented in Figs. 6 and 7. In Fig. 6(a), the

variation of the circumferential displacement v along the radial line g= 0 is shown. The
displacement is seen to decay monotonically with the radial parameter p. The non-vanishing
stress are is observed in Fig. 6(b) to decay rapidly in a similar manner.

The displacement v and stress component (Iet at the bore surface are shown in Fig. 7(a-b)
respectively. Again, these quantities decay rapidly away from the point of load application.

4. CONCLUSION

The displacement and stress components are observed, for both loading cases (with the
exception of CT88 when v> 0), to decay rapidly and monotonically with the distance from the
point of load application. Disregarding the singularities existing at this point, we note that all
quantities decay within a distance of r =2a and r =3a to the order of 8 and 3% respectively of
their values at r = l.la. Hence we may conclude, that the effective penetration of the response
is confined mainly to a zone within a radius r - 2a. Thus the effect beyond this range may be
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considered as negligible. It follows, then, that the results of this study may be applied with
small error to hollow tubes subjected to similar loads on the interior surface, r = a, provided
that the outer radius R > 3a.
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APPENDIX

Evaluation of the integrals appearing in eqns (14) and (21)
The integrals appearing in eqns (14) and (21) must be integrated over the infinite domain 0.. a < 00. The method of

integration used is as follows: a prescribed value of a, a = ao, is chosen such that the infinite domain is separated into two
regions: 0 .. a .. ao and ao" a < 00. In the first region, the integrals are integrated by an afpropriate numerical scheme (e.g.
Simpson's rule) and the resulting integral for each desired quantity is represented by S~\; i.e.

(AI)

where Q( ~a) denotes the appropriate intefrnd for the displacement or stress component.
The remaining integral is denoted by S( l; i.e.

The total integral

is then

I LX {COS a~}S( )= - Q( )(a) . t da
'IT 0 sm a~

(A2a)

(A2b)

(A3)

If ao is chosen sufficiently large, then Kn(x) appearing in the integrands Q of 5(2), can be represented by their
asymptotic expansion [8]

(A4a)

where

(A4b)

,!sing these ~symptotic e~pansions and retaining the first terms, the asymptotic representations of Q(a) are im­
medIately determmed and the mtegrals S<21 may then be evaluated analytically.

Substituting eqns (A4) in eqns (14) results upon taking the leading terms, in the following expressions for 5(2) for the
case of the axi-symmetric radial loads:

IP-1/2(p - 1)/2 J~ e-.(p-I) cos a~ da

S(21 - ·0
w -

(1- v) J~ cos a{da
.0 a

p>1

p=1

(ASa)

(ASb)



176 R. PARNES!,"'(p-onf ,-.,." ';"1d. p>1 (A6a)

s~)= 0

_(l-2v) frosina~da p=1 (A6b)
2 .0 a!-,-"'(p - 1)L.,-"'-<; ""'1 d. p>1 (A7a)

S~=

- fro cos a~ da p = I (A7b)
ao!,-"'fl- 1/, - 2,]f' -0-'" "'"I '" p>1 (A8a)

S(2) _ an
99 -

- 2v fro cos a~ da p = I (A8b)
"0!,-m(, - 1)r"-",,. "'"Id. p>1 (A9a)

(2) ao
S" =

- fro cos a~da p= I (A9b)
"0

m_ [ -,-m(p-Or ,,-0-<> .m~d. ,> 1 (AIOa)
Srz - aO

o p=l. (AIOb)

It is noted that eqns (A7b) and (AIOb) reflect the given boundary conditions of eqn (la) at p = 1 and thus are a
confirmation of the correctness of the derived expressions. However, the expressions for S~ and S~~, eqns (A8b) and
(A9b), appear as divergent integrals when p = I. Noting that for a> ao, their form is identical to the representation of the
Dirac-delta function given by eqn (10), it is possible to eliminate this divergence using the following procedure. We denote
non-trigonometric part of the integrands of (J'99 and (J'" appearing in eqns (l4d, e) by Qij, and let

Upon taking the limit,

/390 = -2v and /3" =-1.

The integral representation of (J'ij may then be written as

The first right-hand term is recognized as representing /3ij6(~) and the second term, denoted now as

su> = 1- (a
o
(Qijlp~ I -/3ij) cos a~ da

'IT Jo

(AlI)

(AI2a, b)

(A13)

(A14)

is integrated numerically. Retaining higher order terms of the asymptotic expansion, eqn (A4) and proceeding as
previously, the last integrals of eqn (Al3) denoted as s~2l become

S~lp= I = -(2 - 3v/2) fro cos a~ da
"0 a

(A15)

S(2)1 _ -3/4 fro cos a~ dzz p=l - Q.
ao a

Thus, in lieu of eqn (A3), (J'oo and (J'" at the bore surface, are expressed as

(A16)
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The integrals of eqns (ASa}-(AIOa) may be readily integrated in the case of p> 1. The final results are [12]:

f~ e-a(p-n{c?s a~} da = e-(P-llao[:t~{Sin(ao~)} _ ( _1){C?S (aoD }]
a, Sin a~ h cos(ao~) p Sin (aoD

f~ a e-a(p-n{c?s a~} da = _ e--(p-I)a,{_[( -l)a +£]{c?s(aO~)}:t [a ~+2(p -l)~]{Sin(a~) }}.
" sm a~ h p 0 h sm(ao~) 0 h cos(ao~)

In the above

g =(p_I)2_~2

h =(p_1)2+~2.
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(A17a)

(Al7b)

(A18a)

(AI8b)

For p = I, the integrals appearing in eqns (ASh), (A6b) and (AI5) are recognized as the cosine and sine integrals, defined
respectively as [13]

. J~ cos a~
C1(ao~) = - -- da

., a

. J~sina~
sl(ao~) =- --da.

" a

(AI9a)

(Al9b)

An identical approach is used for the case of the axi-symmetric torsional loads. It has been pointed out that the
expression appearing in the present solution for such torsional loads is a degenerate case of the solution of the
corresponding moving torsional load problem given in [4] when q is taken as unity in the previous problem. Results for S-2)

for the present case may be obtained from the expressions given in the appendix of [4] upon setting q = I and are therefore
not repeated here.


